Complete Streets

Envisioning a Multimodal North Adams

Sofia Barandiaran, Julia Gunther, Del Rose Hooker, and Cristina Mancilla

Environmental Planning Workshop, Williams College, Fall 2019

Professor Sarah Gardner
Table of Contents

Abstract 3

Project Mission 4
 Background on Complete Streets 5
 Benefits of Complete Streets 6

History of North Adams 8
 Modification of the Hoosic River and Urban Renewal 9
 Demographics of North Adams 12

Research Methodologies 15

Background Research 15
 North Adams Complete Streets Needs Assessment and Prioritization Plan 15
 Legal and Regulatory Guidelines 19
 Funding 19
 Uniform Traffic Codes 20
 Survey and Instrumentation 21
 Street Prioritization 23
 Stakeholder Interviews 25

Findings: Narratives and Redesigns 32
 A Low-Cost, High-Reward Network of Complete Streets 32
 Main St. (Eagle St. to Marshall St.) 33
 Main St. (Church St. to Eagle St.) 37
 West Main St. 40
 Holden St. (Center St. to Main St.) 42
 Holden St. (Center St. to St. Anthony Dr.) 46
 Holden St. (St. Anthony Dr. to River St.) 49
 River Street (Eagle St. to Marshall St.) 51
 Marshall St. (Main St. to Rt. 2 Overpass) 54
 Marshall St. (Overpass to St. Anthony Dr.) 57
 Marshall St (St. Anthony Dr. to River St.) 60
 St. Anthony Drive 63
 Eagle St. (Center St. to River St.) 66
 Center Street (Holden Street to Eagle Street) 69
 Center Street (Holden Street to Marshall Street) 71

Alternative Analysis Matrix 74
Abstract

Complete Streets is a design philosophy that promotes friendly and accessible streets for all types of users, including pedestrians, cyclists, and drivers. Complete Streets benefit the communities they serve in a variety of ways. Complete Streets improve mobility for elders, encourage transportation alternatives, promote good health through walking and biking, improve social interaction, lower harmful emissions, stimulate community development, and most importantly, improve safety. North Adams is a Complete Streets city and has qualified for the State of Massachusetts Complete Streets grant. The purpose of our project is to assess key downtown streets and provide redesign options for those streets so that as North Adams repaves its streets, it can simultaneously turn them into Complete Streets. We find that North Adams’ downtown streets provide ample opportunities to expand multimodal transportation options, from low-cost, very ‘doable’ changes to more ambitious redesigns. We provide redesign options for a network of streets in the downtown core, with Main St. serving as the “backbone” of the network. With redesigns that could be undertaken within simple repaving projects, all of the streets that we analyzed could have bike lanes in at least one direction, if not both. We also provide extensive quantitative and qualitative data on current street conditions and offer an alternative analysis matrix to help policymakers choose the best design.
Project Mission

The goal of our project is to help North Adams implement its Complete Streets plan. Complete Streets is a design philosophy that relates to the multimodality of the city’s transportation system. It is also the name of a pool of funds offered by the state of Massachusetts for the creation of streets that enact this philosophy (MassDOT, n.d.). In pursuit of this goal, we created this report, which includes quantitative and qualitative assessments of key streets in downtown North Adams, as well as proposed redises for these streets. For each street, we present a narrative assessment and multiple options for potential redises. In conjunction with our clients, Amanda Chilson, Mass in Motion Coordinator at the North Berkshire Community Coalition (nbCC), and Eammon Coughlin, Senior Transportation Planner at the Berkshire Regional Planning Commission (BRPC), we created a list of priority streets in the downtown area, with Main Street as the backbone of the network.

This network would be just the start of a larger Complete Streets system in North Adams. Our clients’ priority was depth and quality of design for a few streets, rather than touching on all of the city’s streets. Because the allocation of funds for street redesign happens periodically and in a short time span, it will be useful for the nbCC, BRPC, and North Adams’ government to have designs and evaluations of current streets on hand as they undertake repaving projects. In the long term, North Adams aims to make downtown more walkable and bikeable in order to give residents multimodal ways to commute to work and reach amenities and to encourage more visitors to Mass MoCA to spend time in downtown North Adams. In many ways, our mission can be summed up with one
statistic: 61.4% of North Adams residents live within one mile of downtown (BRPC & City of North Adams 2017, 21). The most important reason to build complete streets in North Adams is that people will use them.

Background on Complete Streets

Over the past decade, the number of people killed by vehicles while walking nationwide has increased by 35% (Smart n.d.). Elders, people of color, and those in low-income communities are disproportionately struck and killed by vehicles while walking (Smart n.d.). Streets are not designed for people, in fact, many federal and state policies prioritize high speeds for cars over safety for people (Smart n.d.). It is important to make streets safer to prevent pedestrian deaths. People aged 50 and up are overrepresented in deaths involving walking across the street. The relative pedestrian danger for older populations is more than a third higher than it is for the general public and the risk increases with age (Smart n.d.). Elders experience this increased risk because some may have difficulty hearing, seeing, or moving quickly. While the general public is killed in deaths related to street design at a rate of 14.8% risk of death by street design, people of color, particularly African Americans and Hispanics, experience a 33% higher risk of death over their lifetimes than white people (Smart n.d.). Additionally, people are struck and killed at higher rates in lower-income communities compared to higher ones. Low-income communities are less likely to have sidewalks, crosswalks, and street designs that reduce speeding (Smart n.d.).

The National Complete Streets Coalition was founded in 2005 to address pedestrian and cyclist safety (Smart n.d.). Complete Streets are designed and operated to prioritize and enable safe use by pedestrians, cyclists, public transport users, and motorcyclists. Complete Streets is a way to ensure
that streets are safe to use, especially for the people most vulnerable to being struck (Smart n.d.). Over 1,325 agencies at the local, regional and state levels have adopted Complete Streets policies to address pedestrian and cyclist safety. Not only are Complete Streets safer for pedestrians and cyclists, they also improve safety for drivers (Marshall & Ferenchak, 2019). Cities have also adopted Complete Streets policies as a way to address the contribution that transportation makes to greenhouse gas emissions (Pioneer Valley, n.d.).

A Complete Street is a street that is easy to cross, safe to walk through, and encourages and protects bicycling. Although a Complete Street is designed to specifically fit its community context, it may include (Smart, n.d.) (Pioneer Valley, n.d.):

- Bike lanes that are large enough for safe travel
- Wide sidewalks that are continuous with no tripping hazards or obstacles
- Bus lanes and safe public transportation stops
- Conspicuous crosswalks and features that are ADA compliant
- Median islands
- Accessible pedestrian signals and signs
- Traffic and speed calming devices (speed bumps, reduced lane width, roundabouts, etc.)

Benefits of Complete Streets

Complete Streets benefit the communities they serve in a variety of ways. Complete Streets improve mobility for elders, encourage transportation alternatives, promote good health through walking and biking, improve social interaction, lower harmful emissions, and most importantly,
improve safety. A study done by the University of North Carolina Highway Safety Research Center found that high traffic volume, higher speed limit, lack of sidewalks, and lack of road buffers were associated with a significantly higher likelihood of a pedestrian being hit by a car while walking along the road (McMahon et al. 2002). They modeled that the presence of sidewalks decreased the likelihood of a crash by 88.2% and when medians were added the likelihood of fatalities decreased by 39%. An investigation done by the Federal Highway Administration found that pedestrian safety and mobility were enhanced by sidewalks and walkways (McMahon et al. 2002). These benefits are not just for pedestrians and cyclists; evidence suggests that all road users—including drivers—have improved safety outcomes from Complete Streets (Marshall & Ferenchak 2019).

Complete Streets also promote good health by encouraging walking and bicycling. With wider sidewalks and safer bike lanes, people will walk and bike more. The CDC recommends adopting a Complete Streets Policy to reduce obesity (Khan et al. 2009). In fact, a report by the State Legislature on encouraging bicycling and walking identified Complete Street policies as the most efficient policy tool to address obesity (Shinkle and Teigen 2008).

Community development and economic growth are also key benefits of Complete Streets. Streets that are well-populated have lower crime rates and encourage interaction among community members. With more people out walking and cycling, communities will feel more connected and safer. Increased pedestrian traffic also benefits local businesses. Studies show that adding a bike lane increases traffic to businesses and promotes economic development (PeopleforBikes & Alliance for Biking & Walking 2015; Jaffe 2015).

Complete Street policy can also reduce automobile emissions. After Boulder, Colorado implemented a strong Complete Streets policy, the number of people bicycling increased and the city’s
annual carbon dioxide emissions fell by half a million pounds (Smart n.d.). The benefits of implementing Complete Street policies are vast and many towns and cities in New England are adopting Complete Street policies. The purpose of this report is to strategize and design streets for the purpose of Complete Street implementation in North Adams.

History of North Adams

The towns of Adams and North Adams, first settled in the 1740s, were previously known as East Hoosac (Spear 1). As Adams grew, the decision was made to divide the city. Adams and North Adams became separately incorporated in 1778 and 1878, respectively. The 19th century saw North Adams as a prominent mill town with textile mills like Arnold Print Works, the supplier of the Union Army fabric, sawmills, and ironworks factories (Mass MoCA, n.d.). The strength of the Hoosic, Connecticut, and Hudson Rivers allowed industries to use hydroelectricity to power their factories.

Immigration and Industrialization in North Adams

Hydroelectricity led to a huge increase in population and industry. Mill recruiters targeted immigrants and even went abroad to Ireland primising to fund voyages to America. But it was not until the Great Potato Famine in the mid-1800s that immigration from Irish to America really boomed. Most of the Irish that settled in the Berkshires left Ireland bound for Canada and eventually settled in North Adams seeking jobs. They were met with harsh discrimination and were forced to take on dangerous and undesirable jobs in mills, tunnels, and sewer systems. Many Irishmen lost their lives building the Hoosac Tunnel due to dangerous working conditions. After the tunnel was completed in 1875, North Adams became one of the largest industrial powers in the Berkshires. The job
opportunities in North Adams attracted thousands more immigrants from across Europe (Hudson and Gelardi).

After the Irish arrived in North Adams, there was an influx of French Canadians seeking to make a living in the mills. Polish and Italians also immigrated to North Adams from the 1890s to the early 20th century. Due to the success of the factories and growing immigrant population, North Adams had 24,000 residents in 1900 (Therrien 2014).

Modification of the Hoosic River and Urban Renewal

The Hoosic River that made it possible for North Adams to prosper was also used as a drainage system for the mills and factories that relied on it (History of the River, n.d.). As a result of being treated as a drainage system, it became unappealing to smell and even see the river. Additionally, North Adams had been flooded by the Hoosic many times. Naturally, many people moved to Adams to escape those floods. In response to the constant threat flooding posed to North Adams’ infrastructure, in the 1950’s the US Corps of Engineers engineered the river to go through high cement flood control chutes, which are still present today. There are active petitions to restore the Hoosic because of the unattractiveness of the chutes, as well as for environmental reasons, but it remains boarded up.
In the 1950s, North Adams received federal funds dedicated to ‘urban renewal’ (Urban Renewal, n.d.). This urban renewal was supposed to target and redesign the central part of town to keep up with the modern world. However, urban renewal projects did not accomplish their goals. In fact, by their end in the 1970s, they caused the destruction or displacement of many people, buildings, and historical sites, including a one-hundred-year-old tree and Saint Anthony’s Church (Manning, n.d.). Elderly residents of North Adams remember downtown as a vibrant place before urban renewal and as a disconnected city post-urban renewal, in part because of the displacement of people. Urban renewal prioritized cars over people, creating many of the challenges to multi-modality that the City faces today.
Shortly after urban renewal, the largest employer of the city from the 1940s to the 1980s, Sprague Electric, closed its doors and caused further devastation to a city already in decline. When Mass MoCa took over the Sprague campus, it offered hope of revitalization for the city by bringing in tourism.

Demographics of North Adams

One of the most telling statistics about North Adams is the trend in population over the last century. The 2018 population is estimated at 12,904, down from the 1900 population of 24,200 (US
The population has been in continual decline for decades due to the flight of important industries and worsening economic prospects. The following graph shows North Adams population between 1970 and 2010.

Figure 3: North Adams population over time. Source: NA Prioritization Plan.

North Adams is 92% white, representing in large part the Irish, French Canadian, and Italian immigration of the mid 1800s. There are very small numbers of people of other races: Hispanics only make up 3% of the population and African Americans less than 2% (US Census Bureau). Compared to the rest of Berkshire County, North Adams has a relatively low median age of 38.9 thanks to the presence of the Massachusetts College of Liberal Arts (MCLA), which has increased enrollment in recent years. Despite this relatively low median age, North Adams still has a substantial aging population, with over a third of the population over 50 (BRPC & City of North Adams 2017, 22). Complete Streets are important for both of these groups: young people like MCLA students and the
aging population. The median household income is $38,774 per year, with 17.8% of the population living in poverty (US Census Bureau). These statistics paint a picture of a largely white, working class city that has struggled with the flight of businesses that employed a lot of people, but that has reason for hope and potential for growth.

With respect to our project, the density of the city and proximity of residential areas to workplaces is particularly important. Unlike many other small cities in rural areas, 61.4% of North Adams residents live within 1 mile of the downtown, according to the 2010 census. This is in large part due to the steep slopes that surround the city, concentrating development in the valley (BRPC & City of North Adams 2017, 21). The following map shows land use and residential density.

Figure 4: Land use and residential density. Source: NA Prioritization Plan.
North Adams presents a lot of opportunities with respect to Complete Streets because of the prevalence of multi-family residential and high-density residential near workplaces in commercial and industrial zones. However, recent data shows that 84.7% of commuters drive, while only 1.1% use transit, 0.2% bike, and 11% walk. While the percentage of pedestrian commuters is unusually high for Berkshire County, there is room for improvement when it comes to transit and bicycle commuters (BRPC & City of North Adams 2017, 6). Indeed, this is particularly notable considering the fact that 20% of NA households do not have a vehicle and 42% have only one vehicle.¹ NA also has a higher-than-average population of disabled individuals over 65 (14.9%), which increases the need for public transit and other forms of non-motorized transportation (BRPC & City of North Adams 2017, 21).

Research Methodologies

Background Research

North Adams Complete Streets Needs Assessment and Prioritization Plan

The *North Adams Complete Streets Needs Assessment and Prioritization Plan*, prepared by the City of North Adams and the Berkshire Regional Planning Commission (BRPC) in 2017, was submitted as part of the requirements for North Adams to become a tier 2 Complete Streets Community and enabled the City to receive Complete Streets funding from MassDOT. The report evaluates existing conditions of North Adams’ transportation system and recommends an implementation process.

¹ This figure includes households with no workers.
First, the report lays out the goals and performance metrics for the project. The aims of the North Adams Complete Streets Program are as follows:

1. Safety: Prioritize safety for all users of the transportation system.
2. Traffic Calming: Promote traffic calming measures in North Adams to encourage access for all modes, reduce speeds in activity hubs, and promote attractive streetscapes.
3. Usability: Increase the livability of the city by prioritizing projects that will impact the greatest number of residents.
4. Connectivity: Provide transportation options by improving system connectivity within and between modes.
5. Project Readiness: Prioritize projects that are “shovel ready,” require minimal or no design/engineering work, and/or are currently under design.
6. Safe Routes to School: Prioritize projects that will provide greater and safer connectivity to the schools in North Adams (BRPC & City of North Adams 2017, 5).

Some of the proposed performance metrics include increases in non-motorized modes of commuting, reduction of crashes, reduction of speeding citations, increase of number of projects in the design and engineering phase, greater participation in Safe Routes to School programs, parent surveys, and increase in non-motorized projects near schools (BRPC & City of North Adams 2017, 6).

The report conducts an assessment of existing transportation conditions in North Adams. The report provides detailed maps with information about road jurisdiction, functional classification, speed limits, and road surface types. There are 90.8 miles of roads in North Adams, of which 72.8% are city roads, which are the only kind that can be targeted for Complete Streets improvements (BRPC & City of North Adams 2017, 25-26). 94.5% of North Adams’ roads are paved (BRPC & City of North
Another element of the assessment is the quality and existence of sidewalks. 68% of North Adams sidewalks are in good or excellent condition, as of 2016 when they were most recently evaluated. However, sidewalk deterioration is a growing problem and substantial gaps in the sidewalk network remain (BRPC & City of North Adams 2017, 31-33). The report includes a map of walk utility score, which indicates where there may be potential for more walking. The thickest blue lines indicate the greatest potential for pedestrian use. In order to find these scores, the methodology asks the question, “if this were a good place to walk, would people find it a useful route between point A and point B?” (BRPC & City of North Adams 2017, 60). As the graphic indicates, there are a lot of streets in the downtown area that would be useful if they were in good walking condition.

With respect to bicycle conditions, North Adams is lacking in off-road bicycle routes, though there are plans for an extension of the Ashuwillticook Rail Trail and a shared-use path between North Adams and Williamstown. With respect to on-road bicycle routes, there are very few miles of dedicated bicycle routes. The report maps existing roads with respect to the level of bicycle competency required to ride on them, with level 1 usable for everyone and level 5 only usable for experts riding with caution. There are no level 1 facilities. Most of the small streets are level 2 but most of the commonly used roads are level 3, 4, or 5 (BRPC & City of North Adams 2017, 36-39). The evaluation of existing conditions also maps crashes of various types and current public transportation. The report includes a map of bike utility score, which indicates where there may be potential for more bicycle transport. The thickest blue lines indicate the greatest potential for bicycle use. In order to find these scores, the methodology asks the question, “if this were a good place to bike, would people find it a useful route
between point A and point B?” (BRPC & City of North Adams 2017, 60). While there may be more potential for pedestrian traffic, there is a strong indication that the core of downtown would be well trafficked by cyclists if it were in good cycling condition.
The report first lists a number of general recommendations, then delves into detail on nearly 40 potential projects. The relevant general recommendations include connecting MCLA to downtown via the Ashland Street Corridor Project, slowing traffic in key areas, using every repaving project as an opportunity for Complete Streets, and investing in low-cost improvements for pedestrians and cycling. In addition to providing greater detail on the general recommendations, the report includes a prioritization plan for 38 projects. Each of these projects is evaluated with respect to the 6 aims (Project Readiness, Usability, Safety, Safe Routes to School, and Traffic Calming) and these goals are weighted and summed together to create a single number. The projects are ranked according to that number. The report then provides additional detail on the challenges and opportunities, as well
as cost estimates for each of the 38 projects. This report provides both excellent background on the transportation situation in North Adams and ample detail with respect to how it can be improved. The excellent analytical and statistical background included in this report helped us craft a plan for which streets to redesign in our project.

Legal and Regulatory Guidelines

Funding

There are three main sources of funding for street improvement: MassWorks, Transportation Improvement Program (TIP) funding, and Complete Streets. Safe Routes to School and miscellaneous grants can serve as funding sources for smaller projects. MassWorks and TIP funding are useful for more ambitious projects that hold regional significance. Funding from Safe Routes to School can help pay for repainted and repaved sidewalks and crosswalks near schools.

The City is planning on undertaking an extensive survey and redesign project on Ashland St. in the very near future. According to City Administrator Michael Canales, this project could be a good candidate for TIP funding (Lescarbeau and Canales 2019). Because of this ongoing project, we chose not to perform an analysis of Ashland St. in this report, although we believe it could be an important component of a multimodal North Adams. Many of the projects we propose in this report could be achieved using Complete Streets funding, although some of the bigger projects could, like Ashland St., be potential candidates for TIP grants.
Uniform Traffic Codes

The uniform traffic code sets out a number of guidelines on how streets should be designed. State and federal governments provide thousands of pages of guidelines on specifications and goals for road design. One example of such regulations surround crosswalk design. Some of our previous ideas included painted crosswalks in order to increase pedestrian visibility to drivers. Beautifully painted crosswalks increase morale and enjoyment when walking through an area and make the area seem more lively and open to the public (Figure 17).

Figure 7: Crosswalks in Long Beach decorated with rainbow colors celebrate the city’s long history of LGBT culture. Photo by Joe Linton.

However, the Federal Highway Administration has long opposed colorful sidewalks suggesting that they can distract pedestrians and drivers, and lead to increased accidents (Santa Monica Moving Forward, 2016). They instead suggest diagonal white lines in between the two parallel lines denoting the boundaries of the crosswalk in order to increase visibility (Section 3B.18, Manual on Uniform Traffic Codes). This example highlights the need to balance design priorities with guidance and regulations from the Uniform Traffic Codes.
Survey and Instrumentation

To assess the streets in North Adams for Complete Streets, we used a street survey provided by the Northern Berkshire Community Coalition. We scored sidewalk condition on a scale of 1-4, with a score of 1 meaning poor, 2 meaning fair, 3 meaning good, and 4 meaning excellent condition. Sidewalk obstructions, cracks, holes, width, and texture were taken into account when scoring sidewalks.
Figure 8: (A) shows a parking sign obstructing the sidewalk and narrowing it to less than 3 feet. (B) shows an uneven sidewalk and overgrown weeds blocking the sidewalk. (C) shows a side of the sidewalk on Main St. with tables and chairs obstructing the sidewalk.

We also took quantitative measures such as curb-to-curb width, length and width of the sidewalk, signage, vehicle land width, condition and length of sidewalks, and speed limit. Other information we gathered for each street included federal funding classifications, right-of-way distance, parking conditions, bus route and bus stop presence, road features, and nearby landmarks. The street surveys that we used can be found in the appendix.
All of this information and more is needed to determine which streets can feasibly be turned into Complete Streets, taking into account funding options and federal space requirements. We used this information to create cross-sections of existing streets in the software Streetmix, and then used Streetmix to create renderings of Complete Streets design options for these streets.

Street Prioritization

Based on the Prioritization Plan and consultation with our clients, we created a list of priority streets to assess in this project. In our fieldwork, we evaluated quantitative and qualitative conditions on the following streets and street sections:

- Main St. (Eagle St. to Marshall St.)
- Main St. (Church St. to Eagle St.)
- West Main St.
- Holden St. (Center St. to Main St.)
- Holden St. (Center St. to St. Anthony Dr.)
- Holden St. (St. Anthony Dr. to River St.)
The streets we assessed had commonalities: all were heavily-used downtown corridors, all had sidewalks, and none had bike lanes. We chose this type of street because we believe we can make the most impact by starting in downtown, thus laying the groundwork for the city to branch out later.

The map below shows the network of streets within the downtown that we analyzed.

Figure 10: Map of streets that we evaluated and redesigned in downtown NA
Stakeholder Interviews

In preparation for our redesigns, we met with (in chronological order): Zac Feury, the Project Coordinator for the North Adams Community Development Office; Andrew Groff, Director of Community Development for the Town of Williamstown; Tim Lescarbeau, City Engineer and Head of the Department of Public Works for the City of North Adams; Mike Canales, City Administrator for the City of North Adams; Bret Beattie, Tree Planting Coordinator and Community Health Worker at nbCC; David Watson, Principal at WatsonActive, a consultant working on Mass in Motion; and Jenny Wright, Design Director at Mass MoCA.

In our meeting with Zac Feury, the Project Coordinator for the North Adams Community Development Office, he shared with us his comprehensive and ambitious vision for a multi-modal, connected North Adams. Feury shared our clients’ vision of making Main Street the backbone of a Complete Streets network. He suggested that the network span out from Main St. with connections along Marshall St. and River St. to Mass MoCA and the UNO neighborhood, along State Street to Heritage State Park and Noel Field, and along Ashland St. and Church St. to the MCLA neighborhood. Feury also informed us of an ongoing project to turn a section of Eagle Street into a “woonerf,” a Dutch design concept for a completely shared street (FHWA). Finally, he shared insights
about design priorities, urging us to consider users of all ages and abilities and to prioritize wayfinding and attractive design.

In our meeting with Andrew Groff, he shared insight on Williamstown’s experience with Complete Streets. He told us about the town’s three-tier Complete Streets process, starting with the adoption of the Complete Streets policy, followed by the application for funding, and finally arriving at implementation. He spoke of the need to balance visioning with feasibility, and specifically of the need to work with engineers to ensure that projects are safe and comply with the Uniform Traffic Codes (discussed in more detail in “Legal and Regulatory Guidelines”). He also shared resources with us, including materials from the Strong Towns movement and Team Better Block.

We had a joint meeting with Tim Lescarbeau and Mike Canales from the City of North Adams. They spoke to us about practical issues around funding and political feasibility, and also shared their aspirational visions for the city. Affordability is a potential barrier for Complete Streets North Adams. The City is currently undertaking a major, $4+ million redesign of Ashland Street. Canales told us that if that project is funded with the Complete Streets grant, which pays $400,000 per year, then Ashland St. will take over a decade to complete and any other Complete Streets projects will be delayed until after that time. Canales is working to make sure that does not happen by trying to secure Transportation Improvement Program (TIP) funding from the federal government for Ashland St. so that Complete Streets funding can be used for other streets. In this project, we considered affordability in light of the different funding sources available for our projects, including Complete Streets, TIP, MassWorks, and other grants. Certain types of changes, like altering the curb positions, are quite costly and ambitious; others, like adding sharrows, are affordable “low-hanging fruit.”
Lescarbeau told us about some of the City’s upcoming repaving priorities. Some projects are happening now or will happen before we can submit our final report. We will not be able to make an impact on these projects. But some projects, like River Street’s sidewalks, may happen next year. These are projects where we can make an impact.

Both Lescarbeau and Canales expressed concerns about political feasibility. Removing parking, for example, may not be politically practical. Lescarbeau and Canales said that although North Adams has an abundance of private parking, it does not have much City-owned parking, so it is not tenable to remove public parking.

The City is currently undertaking a parking audit, due for release in December, which will shed more light on parking in North Adams. Although we were not able to obtain the full results before the end of our project, Zac Feury shared some of the preliminary findings of the study with us. Feury told us in an email,

“In my opinion, North Adams has an abundance of parking (2,939 spaces). The problem, however, is that public parking is not well identified and, in certain instances (e.g.: Center Street lot, St. Anthony’s Drive lot), not conveniently located. That said, our study findings demonstrate that weekday peak parking utilization was 42% while weekend peak utilization was 33%. Few parking areas exceeded 90% utilization. The lots that did (weekday) were, for the most part, private lots (e.g.: MoCA, Juvenile Court). On-street parking on Eagle Street, the western end of Main Street, and the northern end (westerly side) of American Legion Drive also exceeded 90% at peak time. Public lots such as St. Anthony, the non-permitted section of Center Street, and the majority of on-street parking were in the 30%-60% utilization range. Bear in mind that the above numbers are indicative of peak demand during the summer lunch hour” (Feury 2019).

While these results are preliminary and do not reflect the official findings of the parking audit, they suggest that there could be benefits to reducing the overall amount of parking in North Adams and making existing public parking more convenient and accessible to users.

In light of our meeting with Lescarbeau and Canales, we developed two visions of Complete Streets North Adams, a low-cost Option 1 plan that can be achieved through simple repainting and a
more aspirational Option 2 plan. In the practical vision, top priorities are repaving and reclaiming existing sidewalks, ensuring ADA compliance, and adding some bike lanes. In the more ambitious plan, we envision changing curb positions and lane patterns to create dedicated bike lanes and adding street trees and other landscaping features.

Trees are invaluable to urban planning. They cool cities through transpiration and shade. They fix carbon and therefore reduce pollution even as they provide psychological benefits. We interviewed Bret Beattie, Tree Planting Coordinator and Community Health Worker at NBCC, to better understand how to incorporate trees and plants into our street designs. He shared his experience with urban trees and community planting projects. We were interested in using native trees for our street redesigns in order to promote pollinator health and provide ecosystem benefits. Bret Beattie informed us of the challenges with using large deciduous trees and offered alternate species that were non-native, but hardy. Urban street trees must be resilient because they are forced to grow in undesirable conditions. Street trees are planted in pits that limit root growth and are exposed to chemicals and minerals they would not be in their natural environment. Non-native trees do not offer all of the same ecological benefits as native ones, but they are able to withstand the harsh growing conditions of the urban environment. Some species that Beattie recommended were: Honey locust (Gleditsia triacanthos), Small-leaved linden (Tilia cordata), and the silver leaf linden (Tilia tomentosa).

Beattie also explained that trees could not be incorporated into every street design because of limitations due to underlying infrastructure, such as gas pipes. Although trees might be beneficial on a street, it may be challenging or dangerous to plant them because of the risk of damaging pipes. He suggested raised flower beds and in the place of tree pits because the beds will prevent root invasion
and keep harsh salts from harming the plants. In the future, Beattie plans on growing trees along River Street, in the UNO neighborhood, in Brayton Hill and beyond.

In our phone call with David Watson, Principal at WatsonActive, a consultant working on Mass in Motion, we discussed the intersections between Mass in Motion and Complete Streets. Watson shared compelling research about the benefits of Complete Streets projects for safety and public health, as well as resources regarding the design of Complete Streets. He also shared insight about how to present our research to stakeholders and the public in a compelling and convincing way, namely by emphasizing the many Complete Streets benefits that can be achieved at low cost.

In our meeting with Jenny Wright, Design Director at Mass MoCA, we discussed potential allyship between Mass MoCA and the Complete Streets initiative. Wright emphasized that Mass MoCA shares our vision for a North Adams that is multi-modal and connected, where there is no separation between the museum and the town. She told us that the museum is in the final stages of a master plan in which they will propose strategies to connect to downtown North Adams. In particular, we discussed Mass MoCA’s ongoing work to turn the Leu lot on the west side of Marshall St. to the South of the museum into a park. Mass MoCA has already installed the “Big Bling” statue at the corner of Marshall St. and Main St., and is creating a landscaped green area around it. The museum plans to eventually create a lighted, attractive pedestrian path that will lead from that intersection, under the overpass, and to Mass MoCA’s main parking lot. This path can work in concert with Complete Streets and will greatly help to reduce the psychological barrier between Mass MoCA and downtown.
Figure 11: From the corner of Main St. and Marshall St. there is a direct path to Mass MoCA’s main parking lot. Mass MoCA plans to encourage use of this route by creating an attractive, landscaped pedestrian path to the museum. Source: iBerkshires.com.

Figure 12: A plan for the pedestrian path Mass MoCA will create on the west side of Marshall St. Source: iBerkshires.com.
Wright also said that Mass MoCA shared our interest in adding a bike lane on Marshall St. We shared with her our designs for such a bike lane, shown in Figures 43 and 44. We also spoke about Mass MoCA’s bike sharing program, which could help tourists access bikes that they can use to explore North Adams. Wright felt that if bike lanes were built in North Adams, Mass MoCA patrons and employees would enthusiastically make use of them. Overall, we agreed that there is much room for collaboration between Mass MoCA, our clients, and the City in creating a connected, multi-modal North Adams.
Findings: Narratives and Redesigns

A Low-Cost, High-Reward Network of Complete Streets

We found that North Adams has enormous potential for Complete Streets. This can be achieved at minimal cost. With repainting, which will be undertaken anyways during routine repaving projects, the City could add bike lanes in at least one direction for every street we analyzed. For each street, we created Option 1 and Option 2 redesigns. Option 1 redesigns would require minimal costs but would bring tremendous benefits in terms of safety and usability. The following graphic shows the potential bike network under the Option 1 scenarios.

KEY:
SOLID PURPLE = bike lanes in both directions
The above network can be implemented at little to no additional cost above the cost of repaving. This presents an excellent opportunity for the City to reap enormous benefits at very low cost. While our Option 2 benefits are more costly, and should be deployed strategically wherever the need is greatest, we strongly urge the City to adopt Option 1-type redesigns whenever it undertakes a repaving project.

Main St. (Eagle St. to Marshall St.)

Main St. is the heart of North Adams’ downtown; the “spine” of our proposed Complete Streets network. It connects to several key downtown corridors: Marshall St., Holden St., and Eagle St. lead North towards Mass MoCA, the UNO neighborhood, and Big Y, among other destinations. American Legion Drive (already a Complete Street), Ashland St., and Church St. lead towards the MCLA neighborhood. West Main creates a key connection to Route 2, and State St. leads towards Western Gateway Heritage State Park and Noel Field.
Currently, the street is lined with businesses and graced by beloved street trees. The sidewalks are ample and, compared to those of other North Adams’ streets, receive a fair amount of foot traffic. Main St. is also on a key bus route and boasts a covered bus shelter. But Main St. lacks adequate bike infrastructure, instead accommodating four lanes of car traffic and parking on both sides of the street (angled parking on the north side, parallel on the South). These four lanes of traffic also make it difficult to cross Main St.–cars travel quickly down the street, crosswalks are long, and crosswalk signals are slow. Slowing down traffic on Main St. and adding bike lanes will make the street safer, more accessible, and more welcoming for pedestrians and cyclists. This is especially important given
that Main St. is the heart of North Adams’ downtown: A vibrant Main St. will have ripples throughout the City, making it a more livable hometown for locals and a more exciting destination for tourists. In our redesigns, we preserve Main St.’s beloved street trees and ample sidewalks while improving accessibility for cyclists and pedestrians.

Our first option involves removing one lane of traffic on the north side of the street to add a protected two-way bike lane. This protected bike lane will allow locals and tourists alike to access all that North Adams downtown has to offer in a way that is safe, healthy, and environmentally responsible. Welcoming cyclists onto the street will increase engagement with Main St. businesses, bringing people out of cars and into the public sphere. All of this can be achieved without hindering the passage of motorized vehicles. While reducing the number of lanes on the street will make crossing easier and safer, we recognize that at intersections it is important to have two lanes so as to not slow down traffic. For the short stretch of road where two lanes are needed, parking can be removed so that there is room for a bike lane and two vehicle lanes. At intersections, the City also has the option of using bike boxes—or designated areas at intersections where cyclists can wait ahead of drivers—to allow cyclists to turn left or right safely (NACTO).
Our second scenario proposes creating parklets on Main St.’s north side and removing a lane on the south side, thus creating a protected bike lane to each side of the street. Compared to a two-way bike lane on the north side of the street only, this will ease connections to American Legion Drive, Ashland St., and Church St., which form key corridors towards MCLA. Parklets, small parks built on the north side of the street, are mini-public spaces with amenities like benches, greenery, art installations, or tables. These can either be pure public spaces or they be used by Main St. restaurants as outdoor seating space or by Mass MoCA as art spaces. Adding parklets will greatly improve the quantity and quality of public space in North Adams. On the south side of the street, we propose moving the existing bus shelter to the inside of the bike lane. This will allow buses to pick people up without putting cyclists in danger. The ample buffer space that the transit shelter creates can be filled
with trees or other plants, benches, public restrooms, pop-up commercial spaces or kiosks, art installations, bike racks, or bike sharing stations, to name a few examples.

Figure 19: Julia enjoying Main St.’s wide sidewalks. Main St. between Marshall St. and Eagle St.

Main St. (Church St. to Eagle St.)

This eastern section of Main St., lined by the First Baptist Church to the North and First Congregational Church to the South, forms a key connection between the businesses of Main St. and Eagle St. and the MCLA neighborhood via Church St. and Ashland St. We anticipate that MCLA students will benefit greatly from Complete Streets, and making this section of Main St. multi-modal will help connect them to downtown businesses. The City is currently conducting studies or projects of Ashland St., the rotary at the intersection of Main St. and Church St., and Eagle St. This section of Main St. is vital to connecting these projects and ensuring that North Adams’ Complete Streets are truly a comprehensive network.
Figure 20: Existing conditions on Main St., between Church St. and Eagle St. facing East, with the First Baptist Church on the north (left) side and the First Congregational Church on the south (right) side.

Figure 21: Option 1 redesign for Main St., between Church St. and Eagle St. facing East, with the First Baptist Church on the north (left) side and the First Congregational Church on the south (right) side.
Figure 22: Option 2 redesign for Main St., between Church St. and Eagle St. facing East, with the First Baptist Church on the north (left) side and the First Congregational Church on the south (right) side.

Existing conditions on Main St. create ample room for cars but include no bike infrastructure. There are two lanes of vehicle traffic, although the north lane splits into a straight lane and a left turn lane at the Eagle St. intersection. Each driving lane is about 19 feet wide. Main St. also features an ample 14-foot north sidewalk and an adequate 6.5 foot south sidewalk. There is an ample lawn on the south side of the street and some green space on the north side as well. The center island at the intersection of Church St. (not pictured) is also planted with green infrastructure.

In our Option 1 design scenario for this section of Main St., we create a design that takes advantage of the extra space on this street to extend the bike lanes from the previous section of Main St. without sacrificing mobility for drivers or pedestrians. We create a two-way bike track on the north side, with 6-foot bike lanes in each direction, protected from traffic by bollards and by on-street parking. A bike box can be used at the intersection of Eagle St. to make turning safer for cyclists and drivers.
We design our Option 2 scenario to extend the changes made in Option 2 for the previous section of Main St. Creating one bike lane on each side of the street facilitates connections to Church St., Ashland St., and MCLA, compared to Option 1. The vehicle lanes and parking lanes are still ample, and we are able to widen the southern sidewalk to 9 feet. As in the previous scenario, a bike box can be used to facilitate safe turning.

West Main St.

Figure 23: Existing conditions on West Main St., facing West. Measurement taken in front of the Subway restaurant.
Figure 24: Option 1 redesign for West Main St., facing West. Measurement taken in front of the Subway restaurant.

Figure 25: Option 2 redesign for West Main St., facing West. Measurement taken in front of the Subway restaurant.
West Main Street is an extension of Main St., so it is important to consider how the two streets flow and interact. By reducing the southerly driving lane to 12 feet in the Option 1 redesign, it is possible to add a protected contra-traffic bike lane on the north side of the street traveling East (see NACTO for contra-traffic bike lane design guidance). We did not add a bike lane on the other side because of space constraints and challenges rerouting traffic. Given that it is impossible to access Route 2 travelling East up West Main Street, we felt that there was little demand for a bike lane in the westbound direction. The Option 2 redesign also has a 6 foot one way bike lane, but a raised median provides increased protection for the contra-traffic bicycle lane and sidewalk. Narrowing the driving lane in both options would encourage appropriate driving speeds, making West Main safer for all users.

The Option 1 and 2 redesigns of West Main coordinate with the bike travel lanes of the Main Street redesigns, but we highly recommend a traffic engineering study of this section because of challenges the intersection poses. Indeed, the intersection of West Main St. and Marshall St. is a complicated one and could be dangerous for cyclists. Turning it into a successful Complete Street will likely require rigorous study.

Holden St. (Center St. to Main St.)

As one of the principal connections between Route 2 and Main Street and a home to numerous businesses and restaurants, Holden Street has the potential to become a key part of the walkable core of downtown North Adams.
Figure 26: Existing conditions of Holden Street between Main Street and Center Street, viewed facing North.

Figure 27: Option 1 redesign for Holden Street between Main Street and Center Street, viewed facing North.
Figure 28: Option 2 redesign for Holden Street between Main Street and Center Street, viewed facing North.

Figure 29: View of Holden St. between Main St. and Center St., facing North.
While there are already a number of assets that make Holden a pleasant street to walk down, such as murals and wide sidewalks, the design of the roadway itself better suits a high-volume, fast-moving road than a street in the city core. Holden is a two-way street, with one lane in each direction. The southbound lane is a right-turn only lane at the intersection with Main Street. The lanes are 14.5 feet in each direction, which is unnecessarily wide, and can encourage faster driving speeds. As the curbs are now, there are 29 feet available for redesign during a repaving project. We have recommended changes that are achievable during a standard repaving. We recommend adding a bike lane in the southbound direction. The southbound lane would be narrowed to 11 feet and it would remain a turn lane. Due to the design of Main Street, bicycles would also be forced to turn right, so they would not interfere with the cars making a right turn. We recommend that the northbound lane be narrowed to 12 feet. Sharrows can be added to the northbound lane to advise drivers of the presence of cyclists.

If the city were to undertake a more thorough renovation of Holden Street, we have proposed a more ambitious redesign. While this would be more expensive than the Option 1 design, it would fully emphasize multi-modal transportation through downtown North Adams. Holden Street would become one-way in the northbound direction, which would not be extremely disruptive to traffic flow, as there are parallel streets that connect Main Street with Route 2. In this scenario there would be bike lanes measuring 5 feet in each direction. We have widened the sidewalk and added planters to create a buffer with the street. We imagine that this would promote greater walking and biking on Holden Street and strengthen the connection between tourist attractions and Main Street. In addition to these redesigns, we recommend the addition of zebra striping to the crosswalks at Main and Route 2, as well as the installation of detectable warning panels.
Holden St. (Center St. to St. Anthony Dr.)

This section of Holden Street, between St. Anthony Drive and Center Street, crosses Route 2 and allows travellers on Holden Street to access Route 2. The section is very wide and receives a lot of car traffic. It is currently used mostly as an on-ramp for Routes 2 and 8. It is also part of a typical route for Mass MOCA visitors, who exit the MOCA parking lot onto St. Anthony Drive, turn right onto Holden Street, and then turn onto Route 2 to leave North Adams. This section also provides access to Big Y. Making these streets attractive and accessible is a key part of encouraging visitors to explore the rest of downtown North Adams.

Figure 30: Existing conditions of Holden Street between Center Street and St. Anthony Drive, facing North, with the St. Anthony Drive parking lot on the west (left) side of the street and Big Y on the east (right) side of the street.
Figure 31: Option 1 redesign for Holden Street between Center Street and St. Anthony Drive, facing North, with the St. Anthony Drive parking lot on the west (left) side of the street and Big Y on the east (right) side of the street.

Figure 32: Option 2 redesign for Holden Street between Center Street and St. Anthony Drive, facing North, with the St. Anthony Drive parking lot on the west (left) side of the street and Big Y on the east (right) side of the street.
This section has wide lanes, narrow sidewalks, and no bike-related infrastructure, all weaknesses that we attempt to address with our redesigns. In the less drastic change, which could be achieved during routine repavings, we slightly narrow the lanes, which allows the addition of a bike lane in the northbound direction. We have also added a sharrow in the left lane of the southbound direction. These changes make the road substantially more bikeable and encourage safe driving speeds by cars. In our more drastic change, we recommend widening the sidewalk by 0.5 feet. While this may appear small, it makes the sidewalk sufficiently wide for a downtown area. A final option, which we have not conducted a redesign for, would be to remove the right turn lane, but this would likely require a traffic engineering study of the intersection. In addition to these road changes, we
recommend adding detectable warning panels to the crosswalk at Main Street and painting it with zebra stripes.

Holden St. (St. Anthony Dr. to River St.)

This section of Holden connects the Center St. area to River St. It is lined by businesses in some parts and private parking lots in others, and includes a bridge over the Hoosic river.

Figure 34: Existing conditions of Holden Street between St. Anthony Drive and River Street, facing North
Figure 35: Option 1 redesign for Holden Street between St Anthony Drive and River Street, facing North.

Figure 36: Holden St. between St. Anthony’s Drive and River St., facing North.
This street is a prime example of the unnecessarily wide driving lanes that characterize the North Adams downtown. While the recommended width of driving lanes on streets like this is 10-12 feet, Holden has 16.5 foot lanes. We recommend narrowing the lanes to the recommended 11 feet, which creates space for bike lanes in both directions. In this scenario, the street is accessible for drivers, cyclists, and pedestrians. As such, we decided that there was no need for a more costly redesign, as this change is cost-effective and complete. We did not want to add unnecessary street elements that would not dramatically improve the street.

One other improvement that we feel is necessary is a repaving of the sidewalks, which are so bumpy and cracked as to be impassable for a person in a wheelchair. We also recommend the addition of detectable warning panels (DWP) to all ramps which currently do not have them. The crosswalk at Big Y is missing a DWP, as well as both ramps at the crosswalk by the MOCA parking lot, and both ramps at the River Street crosswalk.

River Street (Eagle St. to Marshall St.)

This section of River St. connecting Eagle St. to Marshall St. abuts the historic UNO neighborhood. It features a mix of commercial, residential, and industrial uses—the north side of the street is lined with houses, but the south side has a mix of auto shops and small markets. Near the Marshall St. intersection it passes by the lively UNO Park and community center.
Figure 37: Existing conditions of River Street between Eagle Street and Marshall Street, facing East

Figure 38: Option 1 redesign for River Street between Eagle Street and Marshall Street, facing East
River Street connects to many key downtown streets and has some residential sections, which suggests high potential for improvement. While the lanes are quite wide, the northerly curb is frequently used for parking, although it is unmarked. Parking is prohibited on most parts of the southerly curb. In the Option 1 redesign, the lanes have been narrowed to the appropriate width of 10.5 feet and bike lanes are added in the eastbound direction, preserving parking on the north curb. We have also added sharrows in the westbound direction. This can be achieved during a simple repaving. In a more ambitious version of River Street, the sidewalks would be widened a little bit more, parking would be eliminated, and there would be a bike lane in both directions. In addition to these designs, we recommend a sidewalk repaving project, as the sidewalks on River Street are often cracked to the point of being impassable for a person in a wheelchair. The street also lacks detectable warning panels and/or accessible ramps at the crosswalks at Eagle St, Freeman St, Holden St., north Holden St., and Chase St.
Figure 40: River St. between Eagle St. and Marshall St., facing East. The sidewalk is badly cracked and burdened by many different types of obstructions.

Marshall St. (Main St. to Rt. 2 Overpass)

Figure 41: Marshall St. between Main St. and the overpass, facing South.
Figure 42: Existing conditions on Marshall St. between Main and Overpass.

Figure 43: Option 1 redesign for Marshall Street from Main street to the Rt. 2 Overpass.
This section of Marshall St., right off Main St., is lined with restaurants and other businesses. It is frequented by pedestrians visiting the businesses. It has parking on both sides of the street and receives heavy vehicle traffic. This section, before the overpass, could be improved by reducing the 15.5 foot wide vehicle lane to 10.5 feet. The on-street parking could be reduced from 11.5 feet to 9 feet. Doing these minimal repaving changes would make it possible to add 5 foot bike lanes on either side of the street. These are minimal changes, but they will make a huge difference in promoting biking on Marshall street and connectivity to Mass MoCA as well as Main street. Adding bike lanes will facilitate access to Main street by encouraging direct travel from Mass MoCA via Marshall street. Updating this section of Marshall street could also encourage economic activity to the shops and restaurants lining the street. There is no ‘Big’ change proposed for this section of Marshall street because of the limited curb to curb width and we feel that the minimal change will have ‘Big’ change benefits.

Our proposal to improve this section of Marshall St. works in concert with Mass MoCA’s upcoming plans to create a pedestrian path in the Leu lot leading from the intersection of Main St. and
Marshall St. to Mass MoCA. Jenny Wright, the Design Director at Mass MoCA, also expressed support for adding bike lanes on Marshall St. to improve connections between the town and the museum (see “Stakeholder Interviews”).

Marshall St. (Overpass to St. Anthony Dr.)

This section of Marshall St., underneath the Route 2 overpass, is a dead zone connecting two commercial areas. It has some street parking, and is flanked by two large parking lots, which usually have low utilization. It has wide sidewalks, which were mostly unused when we visited. The three traffic lanes are wide and receive a fair amount of traffic. The overpass creates a psychological barrier between Mass MoCA and downtown, which the City is attempting to overcome with a large banner hung on the overpass that reads “Downtown North Adams: Under Here, Then Left at the Light.”
Figure 45: Wayfinding banner attempting to break the psychological barrier imposed by the Route 2 overpass.

Marshall St. between the overpass and St. Anthony’s, facing South.

Figure 46: Julia showing off an empty city-owned parking lot on Marshall St. by the Route 2 overpass.

Figure 47: Existing conditions on Marshall St. from St. Anthony Drive to the Rt. 2 Overpass.
This section of Marshall Street has great potential of being a better link between Mass MoCA and Main Street., and could guide tourists to explore North Adams beyond Mass Moca. The overpass creates a looming shadow and dangerous presence over the street that discourages visitors of Mass
Moca to go toward Main St. Both of our redesigns prioritizes brightening up the street and making it seem more inviting. One of our main priorities for this section is the addition of more lamps underneath the overpass. We also recommend decreasing the driving lane size to create space for a bike lane in each direction. The southbound driving lane width should decrease from 19 feet to 13.5 feet and the northbound turning lane from 19 to 15.5 feet. This will get rid of excessive lane space as the required vehicle lane width is only 10 feet. There is also a parking lane on the western side of the street that we wish to decrease half of a foot from 11.5 feet to 11 feet. To increase cyclist security, it is also possible to decrease the widths of the driving lanes further by 2.5 and 3.5 feet for the southbound and northbound driving lanes, respectively. This serves to open up space for a striped buffer on each side of the street between the driving and biking lanes. This buffer may be less of a priority but should not impose a large extra cost.

Our proposal to improve this section of Marshall St. works in concert with Mass MoCA’s upcoming plans to create a pedestrian path in the Leu lot leading from the intersection of Main St. and Marshall St. to Mass MoCA. Jenny Wright, the Design Director at Mass MoCA, also expressed support for adding bike lanes on Marshall St. to improve connections between the town and the museum (see “Stakeholder Interviews”).

Marshall St (St. Anthony Dr. to River St.)

This section of Marshall St. connecting River St. and UNO Park to the rest of downtown is flanked by Mass MoCA on one side, and a mix of residential, commercial, and government buildings on the other. The sidewalks are in fairly good condition, and the street receives a fair amount of foot
traffic, but many Mass MoCA visitors still prefer to access the museum via car.

Figure 50: Marshall St. between Overpass and St. Anthony’s Drive, facing East.

Figure 51: Current condition of Marshall St. from St. Anthony Drive to the River Street, facing North with Mass MoCA on the east (left) side of the street.
Figure 52: Option 1 redesign of Marshall Street from the St. Anthony Drive to River Street, facing North with Mass MoCA on the east (left) side of the street.

Figure 53: Option 2 for Marshall Street from St. Anthony Drive to River Street, with Mass MoCA on the east (left) side of the street.
Currently, there are north and southbound lanes of 14.5 feet in width each. These large lanes encourage faster driving speeds and could pose a threat to pedestrians or cyclists. The eastern sidewalk is 11 feet in width while the western sidewalk, on the edge of MassMoCA, is 6.5 feet. It is useful to decrease the widths of both the sidewalk and driving lanes in order to add a bike lane in each direction, especially to keep up with the two bike lane standards started in the previous section of Marshall Street from the Route 2 overpass to St. Anthony Drive. To minimize cost while still including bike lanes, we recommend a decrease in widths of the driving lanes so that the main cost only comes from repainting the road. With this minimal change, we decreased the driving lanes to 10.5 feet each added two 4 feet bike lanes. This will likely decrease car speed and thus increase pedestrian and cyclist safety. In a more ambitious approach, we recommend that the 11 foot sidewalk be decreased to 9 feet in order to add an extra foot to each bike lane. Although the required width for a bike lane is only 4 feet, we feel that an extra foot will provide a safer lane for cyclists. It is important for a street directly leading from MassMoCA to have the street components of a progressive city to attract MassMoCA tourists.

St. Anthony Drive

St. Anthony Drive is a link between MassMoCA and the commercial center of downtown North Adams, which includes the Big Y and Rite Aid. This street has a public parking lot on the southern side of the street that is usually only fully occupied when there are Mass MoCA events.
Figure 54: Existing conditions on St. Anthony Drive, shown facing West, with St. Elizabeth of Hungary Parish on the north (right) side of the street and St. Anthony Drive parking lot on the south (left) side of the street.

Figure 55: Minimal changes to St. Anthony Drive, shown facing West, with St. Elizabeth of Hungary Parish on the north (right) side of the street and St. Anthony Drive parking lot on the south (left) side of the street.
Figure 56: Option 2 redesign of St. Anthony Drive, shown facing West, with St. Elizabeth of Hungary Parish on the north (right) side of the street and St. Anthony Drive parking lot on the south (left) side of the street.

Currently, St. Anthony Drive has two 14.5 feet driving lanes, one in each direction. There are also sidewalks of 5.5 feet on each side of the street, however, they are cracked and would benefit from repaving. In addition, the crosswalk on the eastern end of the street leading to the commercial center does not have ADA compliant ramps leading to it, nor does it have proper crosswalk signage.

The current driving lane widths exceed the required width by 4.5 feet, so we recommend a decrease in lane size to 12 feet each in order to make space for a westbound bike lane of 6 feet. If the lane widths are further decreased to 11 feet, we can extend both sidewalks from the current 5.5 feet to 6.5 feet in a more ambitious design. Separately, we can also add a sharrow to the eastbound lane.

Adding a bike lane, sharrow, and wider sidewalks to St. Anthony Drive will be an important part of
creating safe multimodal linkages that connect a tourist hotspot like MassMoCA to the rest of downtown North Adams.

Eagle St. (Center St. to River St.)

Eagle St. between Center St. and River St. is a major downtown corridor. It connects to Main St. via the planned Eagle St. woonerf between Main St. and Center St. The Eagle St. woonerf will greatly enhance the street and bring benefits to Eagle St. businesses. Our Complete Streets plan for this adjacent section of Eagle St. will work in conjunction with the woonerf to extend walkability and bikeability throughout downtown.

Figure 57: Existing conditions on Eagle St. between River St. and Center St., facing North.
Existing conditions on Eagle St. favor driving over other modes of transportation. With excessively wide 20-foot vehicle lanes, Eagle St. encourages cars to speed, making the street unsafe for
pedestrians. These lanes split in half at intersections to create 10-foot turn lanes. There is no bike infrastructure or green infrastructure.

Our Option 1 scenario turns Eagle St. into a multimodal Complete Street at low cost, keeping curbs where they are and achieving its objectives mostly through repainting. We narrow the vehicle lanes to a still-generous 12 feet, which leaves room to create two ample 6.5-foot bike lanes. Under this scenario, the street will still include 10-foot turn lanes, as it does now: at intersections, the bike lanes can cede way to sharrows for a short stretch so that cars can turn without slowing down traffic.

In addition to adding bike lanes, our Option 2 scenario also widens Eagle Street’s sidewalks and adds planter boxes to serve the dual purposes of greening the street and buffering the bike lanes. This will make Eagle St. healthier and safer for pedestrians and cyclists alike, while still allowing for ample eleven-foot vehicle lanes. Under this scenario it will not be possible to maintain turn lanes. If the City strongly wishes to maintain the turn lanes, however, this can be achieved with minimal modifications to the Option 2 scenario: bike lanes would have to be narrowed to five feet and planter boxes would have to end before intersections so that bike lanes can become sharrows.

With its connections to the Eagle St. woonerf, Main St., Big Y, and River St., Eagle St. is a key downtown corridor that could become a vibrant, thriving Complete Street. The changes we propose promote multimodal transport on Eagle St., calming traffic while creating a safe and pleasant environment for pedestrians, cyclists, and drivers alike.
Center Street (Holden Street to Eagle Street)

Figure 60: Existing conditions of Center Street between Eagle Street and Holden Street, shown facing East
This section of Center Street, which is disconnected from the other section of Center Street, allows drivers to get from Eagle Street and Church Street to the eastbound direction of Route 2, and vice-versa. Center Street also allows access to the parking lot in between Route 2 and Main Street. This road is small and currently unmarked, making it unclear as to whether it is even a 2-way road. Because there is very little space, we have proposed only one redesign, which narrows the lanes and adds a bike lane in one direction and a sharrow in the other direction. These changes maintain existing curbs and cheaply add bike infrastructure.
Center Street (Holden Street to Marshall Street)

At first glance, this portion of Center St. may seem like an alley road to any passerby. It is lined by large murals on either side of the street that make travel significantly more inviting.

Figure 62: Existing conditions of Center Street between Holden Street and Marshall Street, facing West.
Figure 63: Option 1 redesign for Center Street between Holden and Marshall, facing West.
Currently, this is a one way street that varies in lane width from 15’2” to 23’4”. In both cases, there is more than enough room to decrease lane width and add a bike lane. For option one, we can decrease lane width to 11 feet to allow for the minimum required width for a bike lane, four feet.

However, a safer option for cyclists would be to decrease lane width further by a foot and add an extra foot to the bike lane as seen in option two. A bike lane would be a nice addition to the murals seen on the street and would make passage to sites like Eagle St. or Veterans’ Memorial Park easier and more enjoyable for residents of North Adams and tourists from Mass MoCA.
Alternative Analysis Matrix

The City of North Adams has many promising options to choose from when deciding on its final Complete Streets designs. To help our clients and the City of North Adams weigh the benefits and drawbacks of various options, we have crafted an alternative analysis matrix. Loosely based on Donald M. McAllister’s *Evaluation in Environmental Planning: Assessing Environmental, Social, Economic, and Political Trade-offs*, our matrix is a comprehensive and standardized tool for alternative analysis. The user should fill out a separate matrix for every street to consider the relative benefits of different design options. Below, we provide a blank copy of the matrix and an example of a filled-out matrix for Holden St. between Main St. and Center St.

<table>
<thead>
<tr>
<th></th>
<th>Existing Conditions</th>
<th>Option 1</th>
<th>Option 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Total (1-4 Scale)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Promotes appropriate car speed?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crosswalk signalling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crosswalk design (e.g. zebra vs. bar)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walkability Total (1-4 scale)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sidewalk quality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADA compliance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sidewalk width/lack of obstructions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bikeability Total (1-4 scale)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presence (two-way bike lanes, one-way bike lanes, sharrows, nothing)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protected from traffic?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Visibility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>People-Friendliness Total (1-4 scale)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wayfinding & signage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greenery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Street feel” (openness, maintenance, light)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclusivity (age, ability)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVERALL DESIGN SCORE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Replicate Existing Conditions</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>COST ($-$$$)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Blank alternative analysis matrix.

This matrix evaluates street design based on four broad categories: Safety, Walkability, Bikeability, and the quality of being People-Friendly. Each category includes several sub-categories, which are scored on a scale from 1 to 4 and averaged together to produce the category score. The four category scores are then averaged together to produce the overall design score. A separate matrix evaluates cost—this allows users to compare and contextualize the overall design score in terms of its cost.

Many of the categories in the matrix are fairly straightforward, but some require a bit of explanation.

- **Sidewalk quality:** For this sub-category, we envision a 1-4 point scale where 1 means poor, 2 means fair, 3 means good, and 4 means excellent. For all of the streets we have taken data on,
we have already given the sidewalks a score on this scale, and we recommend that the matrix user consult the fieldwork spreadsheet in our appendix to find those scores.

- **Presence of bike infrastructure**: For this sub-category, we envision a 1-4 point scale where 1 means no bike infrastructure, 2 means sharrows, 3 means one-way bike lanes, and 4 means two-way bike lanes.

- **Bike infrastructure visibility**: This sub-category has to do with how visible the bike infrastructure is to drivers and cyclists. Features like painted bike lanes and buffers promote visibility, while sharrows are less visible.

- **People-Friendly Total**: This section describes how welcoming, accessible, and attractive a street is for users. It encompasses wayfinding and signage, which helps people navigate around town and discover new places; greenery, which yields health and psychological benefits for users; “street feel,” which depends on variables like how well-lit and well-maintained a street is; and inclusivity, which describes how accessible a street is for different types of users, including children, elders, and people with disabilities. While “people-friendliness” can seem like a subjective category, breaking it down into these four components and then further breaking the components down into concrete criteria can help standardize the process of evaluating people-friendliness. Including people-friendliness in the evaluation matrix is critically important because it takes account of what a street feels like for users—whether or not it promotes their health, personal well-being, and social well-being. The other categories make it possible for different types of users to travel on North Adams’ streets, but people-friendliness makes people want to be on those streets.
- **Cost:** Ideally, cost should be measured as a dollar amount or range that encompasses the total cost of completing each project. Absent a dollar estimate, a rough $-$$$ scale can be used to represent the qualitative “costliness” of each option. Under this scale, $ indicates low cost, $$ indicates medium cost, and $$$ indicates high cost.

Below is an example of how to fill out the matrix, using Holden St. between Main St. and Center St.

Figure 65: Existing conditions of Holden Street between Main Street and Center Street
Figure 66: Option 1 Holden Street between Main Street and Center Street, viewed facing North

Figure 67: Option 2 for Holden Street between Main Street and Center Street, view facing North
<table>
<thead>
<tr>
<th></th>
<th>Existing Conditions</th>
<th>Option 1</th>
<th>Option 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Total (1-4 Scale)</td>
<td>2.33</td>
<td>3.67</td>
<td>4</td>
</tr>
<tr>
<td>Promotes appropriate car speed?</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Crosswalk signalling</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Crosswalk design</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Walkability Total (1-4 scale)</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Sidewalk quality</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>ADA compliance</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Sidewalk width/lack of obstructions</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Bikeability Total (1-4 scale)</td>
<td>1</td>
<td>2.67</td>
<td>3.67</td>
</tr>
<tr>
<td>Presence (two-way bike lanes, one-way bike lanes, sharrows, nothing)</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Protected from traffic?</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Visibility</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>People-Friendliness Total (1-4 scale)</td>
<td>2.25</td>
<td>2.75</td>
<td>3.75</td>
</tr>
<tr>
<td>Wayfinding & signage</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Greenery</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>“Street feel” (openness, maintenance, light)</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Inclusivity (age, ability, homeless/housed)</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>OVERALL DESIGN SCORE</td>
<td>2.15</td>
<td>3.02</td>
<td>3.86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Replicate Existing Conditions</th>
<th>Option 1</th>
<th>Option 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>COST ($-$$)$</td>
<td>$</td>
<td>$</td>
<td>$$$</td>
</tr>
</tbody>
</table>
For this section of Holden, design scores increase by about 0.8 as we move from existing conditions to Option 1 and again as we move from Option 1 to Option 2. Option 1 delivers big improvements (at least 1 point) compared to existing conditions in the categories of Safety and Bikeability. Option 2 delivers big improvements (at least 1 point) compared to Option 1 in the categories of walkability, bikeability, and people-friendliness.

Option 1 has major cost advantages over Option 2. In fact, we estimate that implementing Option 1 could deliver significant safety and mobility improvements at zero or near-zero additional cost over the cost of recreating existing conditions. Option 2, on the other hand, delivers even greater improvements but would be more costly as it requires adjusting curb positions and building raised planter beds.

If this exercise is repeated for other streets, results are likely to follow the same pattern: overall design score will rise as we move to more ambitious design scenarios, but so will costs. We have carefully designed our Option 1 streets such that they can be implemented at zero or minimal additional costs compared to recreating existing conditions. This reveals an invaluable opportunity for the City of North Adams: when the City performs routine street repavings, it should at a minimum implement the types of zero-cost changes that we have suggested in our Option 1 designs. In doing so, the City can become safer, more attractive for tourists and residents, more environmentally-friendly, and more interconnected, all at no additional cost.

In cases where the City feels that the benefits brought by bigger changes justify additional costs, we encourage the sorts of changes proposed in Option 2 redesigns. Especially for key downtown streets like the ones we have studied in this report, the public safety and community development benefits of Option 2 redesigns may well outweigh the costs in many cases. We offer our Alternative
Analysis Matrix as a tool for stakeholders to use as you evaluate the relative benefits and costs of our redesign options or any redesign options you may create yourself.

Conclusion: Envisioning a Multimodal North Adams

We envision a network of Complete Streets in North Adams with Main Street as its backbone, spanning out from downtown and connecting the city. We have worked with our clients and other stakeholders to design a Complete Streets plan for North Adams. We have provided full redesigns for a few key streets in and around the downtown core. It is our hope that this project will someday grow into a more extended Complete Streets plan.

North Adams has a rich history, a compact and livable downtown core, and a resurgent economy of local businesses. A lack of investment in multi-modal transportation and poor design choices in the past, especially during the urban renewal era, have created a built environment that can feel disjointed and unsafe. However, North Adams has immense potential to be a Complete Streets city accessible to all of its residents. We hope that our project will create the seed of a Complete Streets design for North Adams, which can someday be realized as part of a connected, attractive multi-modal network.

We envision a future North Adams that is multimodal, vibrant, and people-friendly. Complete Streets is one step towards this future. The Eagle Street woonerf, the Ashuwillticook Bike Trail, the North Adams-Williamstown Bike Trail, the Ashland Street redesign, street greening, and other ongoing projects will further contribute to this goal. Achieving this vibrant future will also involve healing the scars of urban renewal: replacing the Route 2 overpass and sprawling downtown parking lots with people-friendly streets. These streets will encourage people to be active, entice visitors
to explore, invite residents to socialize, and make everyone safer—all while reducing carbon emissions from vehicles. While some of these changes—like bringing down the Route 2 overpass—may seem far-fetched, many others are within our grasp. Our Option 1 redesigns help improve health, spur economic development, strengthen social bonds, and increase safety, all at no additional cost to the City above the cost of repaving. The opportunity is there—we urge you to seize it.
Works Cited

Lescarbeau, T., & Canales, M. (2019, October 23). Interview with Tim Lescarbeau and Mike Canales (J. Gunther; D. R. Hooker; & S. Barandiaran, Interviewers).

Appendix

Full Fieldwork Data

Spreadsheet available at the following link:

https://drive.google.com/file/d/1mqLyX_SZhtlonDoXkaVLOSuqxUzLGrK/view?usp=sharing
<table>
<thead>
<tr>
<th>Street</th>
<th>Date</th>
<th>Time</th>
<th>Weather Conditions</th>
<th>Right-of-Way Distance</th>
<th>Curb to Curb Distance</th>
<th>Functional</th>
<th>Street Length</th>
<th>Speed Limit Signs</th>
<th>Location</th>
<th>Limit (mph)</th>
<th>From RIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marshall St. (St. Anthony's Drive to River St.)</td>
<td>10/24</td>
<td>15:30</td>
<td>sunny</td>
<td>164.65</td>
<td>Major Collector</td>
<td>548.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15/4*</td>
<td>Major Collector</td>
<td>548.9</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marshall St (Overpass to St. Anthony's Drive)</td>
<td>10/17</td>
<td>20:15</td>
<td>Rainy and windy</td>
<td>262.48</td>
<td>Major Collector</td>
<td>327</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>Major Collector</td>
<td>327</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holden St. (Care)</td>
<td>10/20</td>
<td>13:28</td>
<td>Cloudy, temperate</td>
<td>262.48</td>
<td>Major Collector</td>
<td>198.3</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38/4*</td>
<td>Major Collector</td>
<td>198.3</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holden St. (St. Anthony's Dr. to River St.)</td>
<td>10/20</td>
<td>13:00</td>
<td>Cold, Cloudy</td>
<td>137.802</td>
<td>Major Collector</td>
<td>706.26806</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>St. Anthony Ave</td>
<td>10/20</td>
<td>13:00</td>
<td>Cold, Cloudy</td>
<td>262.48</td>
<td>Major Collector</td>
<td>483.6194</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eagle St. (Canal/River St. Intersection to Center/Eagle St.)</td>
<td>10/20</td>
<td>13:00</td>
<td>Cold, Cloudy</td>
<td>164.65</td>
<td>Minor Arterial</td>
<td>628.671</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center St.</td>
<td>10/20</td>
<td>13:00</td>
<td>Cold, Cloudy</td>
<td>137.802</td>
<td>Major Collector</td>
<td>706.26806</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main St. (Eagle St. to Church St.)</td>
<td>10/20</td>
<td>13:00</td>
<td>Cold, Cloudy</td>
<td>278.885</td>
<td>Minor Arterial</td>
<td>880.0347</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Main St.</td>
<td>10/20</td>
<td>13:00</td>
<td>Cold, Cloudy</td>
<td>278.885</td>
<td>Major Collector</td>
<td>667.84598</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compiled by:
Title:
Date: 10/20

End of Document
<table>
<thead>
<tr>
<th>Street</th>
<th>Parking</th>
<th>Bus Shelters</th>
<th>Vehicle Lanes</th>
<th>Other Road Features</th>
<th>Nearby Destinations</th>
<th>Signage</th>
<th>Street Mi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marshall St (St. Anthony's Drive to River St)</td>
<td>N</td>
<td>N</td>
<td>2-Way</td>
<td>14'2"</td>
<td>No marked shoulders</td>
<td>MOCA, Uno Park, C signs to community</td>
<td>https://a treesmap!</td>
</tr>
<tr>
<td>Marshall St (Overpass to St. Anthony's Drive)</td>
<td>N</td>
<td>N</td>
<td>2-Way</td>
<td>14'9"</td>
<td>Main St., Mass MOi</td>
<td>“Holden St.” sign</td>
<td>https://a treesmap!</td>
</tr>
<tr>
<td>Holden St. (Center St. Intersection to St. Anthony's Dr.)</td>
<td>N</td>
<td>N</td>
<td>2-way, 3 lanes</td>
<td>13'</td>
<td>Big Y, Rite Aid, con</td>
<td>Wayfinding signs</td>
<td>https://a treesmap!</td>
</tr>
</tbody>
</table>

Holden St. (St. Anthony’s Dr. to River St.)

St. Anthony Drve

Eagle St. (Canal/River St. Intersection to Center/Eagle St. Intersection)

Center St.

Main St. (Eagle St. to Church St.)

West Main St.

Center St. (Holden and Marshall)

<table>
<thead>
<tr>
<th>N</th>
<th>N</th>
<th>1-way</th>
<th>15'2", it wide</th>
<th>Mural, Main St.</th>
<th>"No parking", Wayfinding</th>
<th>Bike Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Main</td>
<td>Y</td>
<td>Both</td>
<td>2-way</td>
<td>28'4"</td>
<td>N</td>
<td>Main St.</td>
</tr>
</tbody>
</table>

West Main

<table>
<thead>
<tr>
<th>N</th>
<th>Both</th>
<th>N</th>
<th>2-way</th>
<th>35'9"</th>
<th>Main St.</th>
<th>Way finding near main st.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>21'5"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24'2"</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alternative Analysis Matrix

<table>
<thead>
<tr>
<th>Safety Total (1-4 Scale)</th>
<th>Existing Conditions</th>
<th>Option 1</th>
<th>Option 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promotes appropriate car speed?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crosswalk signalling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crosswalk design (e.g. zebra vs. bar)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Walkability Total (1-4 scale)			
Sidewalk quality			
ADA compliance			
Sidewalk width/lack of obstructions			

Bikeability Total (1-4 scale)			
Presence (two-way bike lanes, one-way bike lanes, sharrows, nothing)			
Protected from traffic?			
Visibility			

People-Friendliness Total (1-4 scale)			
Wayfinding & signage			
Greenery			
“Street feel” (openness, maintenance, light)			
Inclusivity (age, ability)			

OVERALL DESIGN SCORE

<table>
<thead>
<tr>
<th></th>
<th>Replicate Existing Conditions</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>COST ($-$$$$)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fieldwork Worksheets

All of the worksheets are available at the following link:

https://drive.google.com/file/d/1UiDic-pinps4kZZW8P0kjgyboK-_EoiA/view?usp=sharing

Some example worksheets are below:
Holden St. (Center St. Intersection to Main St. Intersection)

Street: Holden St.

Date/Day: 10/17

Time: 1:15

Weather Conditions (cloudy, sunny, etc.): Rainy + windy

Right-of-Way Distance (use MassDOT Road Inventory file):

Curb to Curb Distance: 24

Federal Functional Classification (use MassDOT Road Inventory file. Use GIS and Download this):

What Funding should be sought for this street?

Street Length (use GIS or Google Earth. If street changes width drastically, fill out a separate sheet for each segment):

Speed Limit:
Are there speed limit signs? No

If Yes, what is the posted speed limit? 15

Sidewalk:
One side (both sides) of sidewalk on only one side, note side - N/E/S/W:

Length of Sidewalk (Does it go along entire street)? Yes
ADA Components (Curb Ramps, Condition, Detectable Warning Panels):

- Condition: Good
- South Side only

Sidewalk Condition (Narrow, Wide, Bumpy, Cracked, Etc.):
Good (b) wide + pleasant w/ lighting

Obstructions (Y/N, if so what) N

Is there a grass strip between sidewalk and street? If Yes, please measure width (Notes of what is there along strip). N

Measurement of the curb width: 9" both sides

Crosswalk:

Are there any crosswalks? If Yes, how many and do they have signals?
Y, two; one per side. North side has signal.

Condition of Crosswalk:
Fair (3) — two bars

Are they ADA approved? Y

What is the distance of the crosswalk?
N: 32'1"; S: 32'8"

Parking:

Is there on street parking? N

One side/both sides? (If parking on only one side, note side-N/E/S/W): N/A

Parking Conditions (from North Adams Ordinance):

Bus Route (Y/N) (from GIS or BRTA map):
Are there designated bus shelters on road? N

Vehicle Lanes (1 way / 2 way travel):
- N -> S lane is right-turn only
- Lane width measurement: 14' 6"

Other Road Features (bike lane, paved shoulder, etc): N/A
- Are there currently marked shoulders on the road? (If yes, what is the width?) N

Landmarks / Nearby Destinations:
- Main St.
- Main MoCA
- Restaurants on Holden

Signage (note type and number):
- "Holden St" sign, one on north side
- No stop signs

Draw cross-section sketch below or attach separate sheets:

Looking at Holden facing North from Main St.
River St. from Eagle St. to Marshall St.

Street:
River St. from Eagle St. to Marshall

Date/Day:
10/20

Time:
2:26

Weather Conditions (cloudy, sunny, etc.):
Cloudy & Temperature

Right-of-Way Distance (use MassDOT Road Inventory file):

Curb to Curb Distance:
32' 7"

Federal Functional Classification (use MassDOT Road Inventory file. Use GIS and Download this):

What Funding should be sought for this street?

Street Length (use GIS or Google Earth. If street changes width drastically, fill out a separate sheet for each segment):

Speed Limit:
Are there speed limit signs? Yes @ Eagle St.

If Yes, what is the posted speed limit? 25 mph

Sidewalk:
One side / both sides? (If sidewalk on only one side, note side -N/E/S/W):
N: $\frac{5}{2}$ ft S: 5' 8"

Length of Sidewalk (Does it go along entire street?)
Yes
Are there designated bus shelters on road?

No

Vehicle Lanes (1 way / 2-way travel):

Lane width measurement:

16' 3.5"

Other Road Features (bike lane, paved shoulder, etc):

Are there currently marked shoulders on the road? (If yes, what is the width?) No

Landmarks / Nearby Destinations:
- UN/O Community Center
- UN/O Park

Signage (note type and number):
- Yield to pedestrians
- “East 65 River St.”: 1 @ Holden Sw
- “No parking” : 2 @ UNO Community Center
- UN/O Pavement

Drew cross-section sketch below or attach separate sheets:

In front of 65 River St.
St. Anthony Drive

Street: St. Anthony's Drive

Date/Day: 11/3, Sunday

Time: 14:36

Weather Conditions (cloudy, sunny, etc.):

Cloudy

Right-of-Way Distance (use MassDOT Road Inventory file):

Curb to Curb Distance:

420.3 ft

Federal Functional Classification (use MassDOT Road inventory file. Use GIS and Download this):

What Funding should be sought for this street?

Street Length (use GIS or Google Earth. If street changes width drastically, fill out a separate sheet for each segment):

Speed Limit:

Are there speed limit signs?

If Yes, what is the posted speed limit?

Sidewalk:

One side/both sides (If sidewalk on only one side, note side-N/E/S/W):

4th Side

Length of Sidewalk (Does it go along entire street?)
ADA Components (Curb Ramps, Condition, Detectable Warning Panels):

Sidewalk Condition (Narrow, Wide, Bumpy, Cracked, Etc.)

Obstructions (Y/N, 1. If so what)

Y, Curb posts.

Is there a grass strip between sidewalk and street? If Yes, please measure width (Notes of what is there along strip).

Measurement of the curb width:

Y, 7 in. of 8 in.

Crosswalk:

Are there any crosswalks? If Yes, how many and do they have signals?

2 (Crosswalks) No signals

Condition of Crosswalk:

Are they ADA approved?

No, Detectable Pannels

What is the distance of the crosswalk?

58 ft.

Parking

Is there on street parking?

N/A

Parking Conditions (from North Adams Ordinance):

N/A

Bus Route (Y/N) (from GIS or BRTA map):
Are there designated bus shelters on road?
No

Vehicle Lanes (1 way / 2-way travel):
2 way

Lane width measurement:
14 7/12 m

Other Road Features (bike lane, paved shoulder, etc):

Are there currently marked shoulders on the road? (If yes, what is the width?)
No

Landmarks / Nearby Destinations:
St. Edmond of Hungary Parish, Missouri Ave.
Bis Yr. Muni St.

Signage (note type and number):

Draw cross-section sketch below or attach separate sheets:

Facing West

N 5 1/2 7" 29 3/4 9 4 8/5
Main Street from Eagle St. to Church St.

Street:

Date/Day:

Time:

Weather Conditions (cloudy, sunny, etc.):

Right-of-Way Distance (use MassDOT Road Inventory file):

Curb to Curb Distance:

Federal Functional Classification (use MassDOT Road Inventory file. Use GIS and Download this):

What Funding should be sought for this street?

Street Length (use GIS or Google Earth. If street changes width drastically, fill out a separate sheet for each segment):

Speed Limit:

Are there speed limit signs?

If Yes, what is the posted speed limit?

Sidewalk:

One side/both sides (If sidewalk on only one side, note side - N/E/S/W):

Length of Sidewalk (Does it go along entire street?)
ADA Components (Curb Ramps, Condition, Detectable Warning Panels):

Sidewalk Condition (Narrow, Wide, Bumpy, Cracked, Etc.)

Obstructions (Y/N, if so what)

Is there a grass strip between sidewalk and street? If Yes, please measure width (Notes of what is there along strip).

Measurement of the curb width:

Crosswalk:

Are there any crosswalks? If Yes, how many and do they have signals?

Condition of Crosswalk:

Are they ADA approved?

What is the distance of the crosswalk?

Parking

Is there on street parking?

One side/both sides? (If parking on only one side, note side-N/E/S/W)

Parking Conditions (from North Adams Ordinance):

Bus Route (Y/N) (from GIS or BRTA map):
Are there designated bus shelters on road?

Vehicle Lanes (1 way / 2-way travel):

2 way

Lane width measurement:

28 4 in

Other Road Features (bike lane, paved shoulder, etc):

Are there currently marked shoulders on the road? (If yes, what is the width?)

Landmarks / Nearby Destinations:

Main St.

Signage (note type and number):

No signage

Draw cross-section sketch below or attach separate sheets:

![Sketch Image]